A Modified Infomax ICA Algorithm for fMRI Data Source Separation
نویسندگان
چکیده
منابع مشابه
A Modified Infomax ICA Algorithm for fMRI Data Source Separation
This study presents a modified infomax model of Independent Component Analysis (ICA) for the source separation problem of fMRI data. Functional MRI data is processed by different blind source separation techniques including Independent Component Analysis (ICA). ICA is a statistical decomposition method used for multivariate data source separation. ICA algorithm is based on independence of extra...
متن کاملA modified infomax algorithm for blind signal separation
We present a new algorithm to perform blind signal separation (BSS), which takes a trade-off between the ordinary gradient infomax algorithm and the natural gradient infomax algorithm. Analyzing the algorithm, we show that desired equilibrium points are locally stable by choosing appropriate score functions and step sizes. The algorithm provides better performance than the ordinary gradient alg...
متن کاملA spatially robust ICA algorithm for multiple fMRI data sets
In this paper we derive an independent-component analysis (ICA) method for analyzing two or more data sets simultaneously. Our model extracts independent components common to all data sets and independent data-set-specific components. We use time-delayed autocorrelations to obtain independent signal components and base our algorithm on prediction analysis. We applied this method to functional b...
متن کاملConvergence Analysis of a Randomly Perturbed Infomax Algorithm for Blind Source Separation
We present a novel variation of the well-known infomax algorithm of blind source separation. Under natural gradient descent, the infomax algorithm converges to a stationary point of a limiting ordinary differential equation. However, due to the presence of saddle points or local minima of the corresponding likelihood function, the algorithm may be trapped around these “bad” stationary points fo...
متن کاملBlind Source Separation Using Modified Contrast Function in Fast ICA Algorithm
A novel contrast function is proposed to be used in fastICA algorithm for Blind Source Separation (BSS). Simulation results show that the proposed nonlinear function used to separate image mixtures, results in faster execution and good quality image separation. Peak Signal to Noise Ratio (PSNR), Improved Signal to Noise Ratio (ISNR), Signal to Noise Ratio (SNR) and Root Mean Square Error (RMSE)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Research Journal of Applied Sciences, Engineering and Technology
سال: 2013
ISSN: 2040-7459,2040-7467
DOI: 10.19026/rjaset.5.4333